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Abstract As a program executes, some computations are performed over
and over again. These redundant computations increase the program’s execu-
tion time since they could require multiple cycles to execute and because they
consume limited processor resources. To minimize the performance degra-
dation that redundant computations have on the processor, Instruction Pre-
computation hardware can be used to dynamically remove these redundant
computations. Instruction Precomputation profiles the program to determine
the highest frequency redundant computations. These computations then are
loaded into the Precomputation Table before the program executes. Dur-
ing program execution, the processor accesses the Precomputation Table to
determine whether or not an instruction is a redundant computation; instruc-
tions that are redundant receive their output value from the Precomputation
Table and are removed from the pipeline. The key difference between Instruc-
tion Precomputation and Value Reuse – another microarchitectural technique
that dynamically removes redundant computations – is that Instruction Pre-
computation does not dynamically update the Precomputation Table with
the most recent redundant computations since it already contains those that
occur with the highest frequency. For a 2048-entry Precomputation Table,
dynamically removing redundant computations yields an average speedup of
10.53%, while, by comparison, a 2048-entry Value Reuse Table produces an
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10 Speculative Execution in High Performance Computer Architectures

average speedup of 7.43%.

1.1 Introduction

During the course of a program’s execution, a processor executes many
redundant computations. A redundant computation is a computation that
the processor already performed earlier in the program. Since the actual
input operand values may be unknown at compile time – possibly because
they depend on the inputs to the program – an optimizing compiler may
not be able to remove these redundant computations during the compilation
process.

Redundant computations degrade the processor’s performance in two ways.
First, executing instructions that are redundant computations consumes valu-
able processor resources, such as functional units, issue slots, and bus band-
width, which could have been used to execute other instructions. Second,
redundant computations that are on the program’s critical path can increase
the programs overall execution time.

Value Reuse [1] is a microarchitectural technique that improves the proces-
sors performance by dynamically removing redundant computations from the
pipeline. During the programs execution, the Value Reuse hardware compares
the opcode and input operand values of the current instruction against the
opcodes and input operand values of all recently executed instructions, which
are stored in the Value Reuse Table (VRT). If there is match between the op-
codes and input operand values, then the current instruction is a redundant
computation and, instead of continuing its execution, the current instruction
gets its output value from the result stored in the VRT. On the other hand, if
the current instruction’s opcode and input operand values do not match those
found in the VRT, then the instruction is not a recent redundant computation
and it executes normally. After the instruction finishes execution, the Value
Reuse hardware stores the opcode, input operand values, and output value
for that instruction into the VRT.

While Value Reuse can improve the processors performance, it does not
necessarily target the redundant computations that have the most effect on
the programs execution time. This shortcoming stems from the fact that
the VRT is finite in size. Since the processor constantly updates the VRT,
a redundant computation could be stored in the VRT, evicted, re-executed,
and stored again. As a result, the VRT could hold redundant computations
that have a very low frequency of execution, thus decreasing the effectiveness
of this mechanism.

To address this frequency of execution issue, Instruction Precomputation
[2] uses profiling to determine the redundant computations with the highest
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FIGURE 1.1: Frequency distribution of unique computations

frequencies of execution. The opcodes and input operands for these redundant
computations then are loaded into the Precomputation Table (PT) before the
program executes. During program execution, the PT functions like a VRT,
but with two key differences: 1) The PT stores only the highest frequency re-
dundant computations, and 2) The PT does not replace or update any entries.
As a result, this approach selectively targets those redundant computations
that have the largest impact on the program’s performance.

1.2 Redundant Computations

Since Instruction Precomputation does not update the PT with latest re-
dundant computations, the redundant computations that are loaded in to the
PT must account for a sufficiently large percentage of the program’s total
dynamic instruction count or else Instruction Precomputation will not signif-
icantly improve the processor’s performance. From another point-of-view, if
the number of redundant computations needed by the Instruction Precompu-
tation mechanism to improve the processor’s performance significantly results
in an excessively large PT, then Instruction Precomputation is not a feasible
idea. Therefore, the key question is: Is there a small set of high frequency re-
dundant computations that account for a large percentage of the total number
of instructions executed?
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FIGURE 1.2: Percentage of dynamic instructions due to the unique com-
putations in each frequency range

To determine the frequency of redundant computations, the opcodes and
input operands (hereafter referred to together as a “unique computation”) for
all instructions were stored. Accordingly, any unique computation that has a
frequency of execution greater than one is a redundant computation, since it
was executed more than once in the program. After profiling each benchmark,
the unique computations were sorted by their frequency of execution. Figure
1.1 shows the frequency distribution of the unique computations for selected
benchmarks from the SPEC CPU 2000 benchmark suite (described in Section
1.4), using logarithmic frequency ranges. Logarithmic ranges were used since
they produced the most compact results without affecting the content.

In Figure 1.1, the height of each bar corresponds to the percentage of unique
computations that have a frequency of execution within that frequency range.
With the exception of gzip, almost 80% of all unique computations have ex-
ecution frequencies less than 10, while over 90% of all unique computations
have execution frequencies less than 100. This result shows that most unique
computations occur relatively infrequently in a program. Consequently, the
performance benefit of caching most of the unique computations is relatively
low since they only execute a few times.

A unique computation’s frequency of execution corresponds to the number
of dynamic instructions that that unique computation represents. Figure
1.2 shows the percentage of the total number of dynamic instructions that
are accounted for by the unique computations in each frequency range for
the different benchmark programs. For each frequency range, comparing the
heights of the bars in Figures 1.1 and 1.2 shows the relationship between the
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TABLE 1.1: Characteristics of the 2048 Highest Frequency Unique
Computations

Benchmark % of Total Unique Computations % of Total Instructions
gzip 0.024 14.68

vpr-Place 0.029 40.57
vpr-Route 0.162 23.44

gcc 0.032 26.25
mesa 0.010 44.49
Art 0.010 20.24
mcf 0.005 19.04

equake 0.017 37.87
ammp 0.079 23.93
parser 0.010 22.86
vortex 0.033 25.24
bzip2 0.002 26.83
twolf 0.026 23.54

unique computations and dynamic instructions. For example, in vpr-Place,
only 3.66% of all dynamic instructions produce more than 99% of all unique
computations.

More than 90% of the unique computations account for only 2.29% (mesa)
to 29.66% (bzip2 ) of the total number of instructions. In other words, a very
large percentage of the unique computations cover a disproportionately small
percentage of the total number of instructions. On the other hand, a small
set of unique computations accounts for a disproportionately large number of
instructions. Therefore, simply storing the highest frequency unique compu-
tations will cover a significant percentage of the programs instructions.

Table 1.1 shows the percentage of dynamic instructions that are repre-
sented by the highest frequency 2048 unique computations. The top 2048
unique computations, which account for a very small percentage of the total
unique computations (0.002% - 0.162%), represent a significant percentage of
the total dynamic instructions (14.68% - 44.49%). The conclusion from the
results in this section is that a significant percentage of a program’s dynamic
instructions are due to a small number of high-frequency unique computations.

1.3 Instruction Precomputation

As described above, Instruction Precomputation consists of two main steps:
static profiling and dynamic removal of redundant computations. In the pro-
filing step, the compiler executes the program with a representative input
set to determine the unique computations that have the highest frequencies
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TABLE 1.2: Number of Unique
Computations that are Present in Two
Sets of the 2048 Highest Frequency
Unique Computations from Two Different
Input Sets

Benchmark In Common Percentage
gzip 2028 99.02

vpr-Place 527 25.73
vpr-Route 1228 59.96

gcc 1951 95.26
mesa 589 28.76
art 1615 78.86
mcf 1675 81.79

equake 1816 88.67
ammp 1862 90.92
parser 1309 63.92
vortex 1298 63.38
bzip2 1198 58.50
twolf 397 19.38

of execution. Alternatively, instead of selecting unique computations based
solely on their frequency of execution, the compiler could also factor in the
expected execution latency to select unique computations with the highest
frequency-latency products (FLP). The FLP is simply the unique computa-
tion’s frequency of execution multiplied by its execution latency.

Since Instruction Precomputation is based on static profiling using only a
single input set, the key question is: Do two input sets have a significant
number of high frequency (or FLP) unique computations in common? If the
highest frequency computations are simply an artifact of the specific input set
that was used, then Instruction Precomputation cannot be used to improve the
performance of the processor since the unique computations are not a function
of the program. To answer this question, Table 1.2 shows the number of
unique computations that are common between the top 2048 highest frequency
unique computations for two different input sets. The second column shows
the number of unique computations that are present in both sets while the
third column shows that number as a percentage of the total number of unique
computations (2048) in either set.

The results in Table 1.2 show that with the exceptions of vpr-Place, mesa,
and twolf, at least 50% of unique computations in one set are present in the
other set. For gzip, gcc, and ammp, over 90% of the unique computations in
one set are present in the other. The key conclusion from Table 1.2 is that for
most benchmarks, a significant percentage of the same unique computations
are present across multiple input sets. Consequently, the conclusion is that
the highest frequency unique computations are primarily a function of the
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FIGURE 1.3: Operation of a Superscalar Pipeline with Instruction Pre-
computation

benchmark and less a function of the specific input set. Therefore, Instruction
Precomputation can use static profiling to determine the highest frequency
unique computations for a program.

After the compiler determines the set of the highest frequency unique com-
putations, they are compiled into the program binary. Therefore, each set is
unique only to that program.

The second step for Instruction Precomputation is the removal of redun-
dant computations at run-time. Before the program begins execution, the
processor initializes the Precomputation Table with the unique computations
that were found in the profiling step. Then, as the program executes, for
each instruction, the processor accesses the PT to see if the opcode and input
operands match an entry in the PT. If a match is found, then the PT for-
wards the result of that computation to the instruction and the instruction
needs only to commit. If a match is not found, then the instruction continues
through the pipeline and executes as normal. Figure 1.3 shows how the PT
is integrated into the processor’s pipeline.

During the decode and issue stages, the opcode and input operands for
each dynamic instruction are sent to the PT, when available. The Instruction
Precomputation hardware then determines if there is a match between the
current opcode and input operands with the unique computations in the PT. If
a match is found, the Instruction Precomputation hardware sends the output
value for that instruction to the writeback stage, which commits that value
when the instruction is retired.

Finally, unlike Value Reuse, Instruction Precomputation never updates the
PT. Rather, the PT is initialized just before the program starts executing.
When a unique computation is not found in the PT, the processor executes the
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instruction as normal. While this approach eliminates the need for hardware
to dynamically update the PT – thus decreasing the complexity of and access
time to the PT – it also means that the PT cannot be updated with the most
current high-frequency unique computations.

1.3.1 A Comparison of Instruction Precomputation and Value
Reuse

Overall, Instruction Precomputation and Value Reuse use similar approaches
to reduce execution time. Both methods dynamically remove instructions that
are redundant computations from the pipeline after forwarding the correct
output value from the redundant computation table to that instruction. Both
methods define a redundant computation to be one that is currently in the
PT or VRT.

The key difference between these two approaches is how a redundant com-
putation gets into the PT or VRT. In Instruction Precomputation, compiler
profiling determines the set of redundant computations that are to be put
into the PT. Since it is likely that, for that particular input set, the highest
frequency unique computations are already in the PT, there is no need for
dynamic replacement. In Value Reuse, in contrast, if a unique computation
is not found in the VRT, then it is added to the VRT, even if it replaces a
higher frequency redundant computation.

The VRT may have a lower access time than the PT, however. Instead of
comparing the current instructions opcode and input operands against every
unique computation in the VRT, using the current instruction’s PC as an
index into the VRT can reduce the VRT access time by quickly selecting
the matching table entry (although the input operands and the tag still need
to be compared). As a result, not only does this approach require fewer
comparisons than Instruction Precomputation, it also removes the need to
compare opcodes since there can only be one opcode per PC.

1.4 Simulation Methodology

To evaluate the performance potential of Instruction Precomputation com-
pared to conventional Value Reuse, sim-outorder, which is the superscalar
processor simulator from the SimpleScalar [3] tool suite, was used. The base
processor was configured to be a 4-way issue machine. Table 1.3 shows the
values of the key processor and memory parameters that were used for the per-
formance evaluations of both techniques. These parameter values are similar
to those found in the Alpha 21264 [4] and the MIPS R10000 [5].

Twelve benchmarks were selected from the SPEC CPU 2000 [6] benchmark
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TABLE 1.3: Key Parameters for the
Performance Evaluation of Instruction
Precomputation

Parameter Value

Branch Predictor Combined
Branch History Table Entries 8192

Return Address Stack (RAS) Entries 64
Branch Misprediction Penalty 3 Cycles

Instruction Fetch Queue Entries 32
Reorder Buffer Entries 64

Number of Integer ALUs 2
Number of FP ALUs 2

Number of Integer Multipliers 1
Number of FP Multipliers 1
Load-Store Queue Entries 32
Number of Memory Ports 2

L1 D-Cache Size 32 KB
L1 D-Cache Associativity 2-Way
L1 D-Cache Block Size 32 Bytes
L1 D-Cache Latency 1 Cycle

L1 I-Cache Size 32 KB
L1 I-Cache Associativity 2-Way
L1 I-Cache Block Size 32 Bytes
L1 I-Cache Latency 1 Cycle

L2 Cache Size 256 KB
L2 Cache Associativity 4-Way
L2 Cache Block Size 64 Bytes
L2 Cache Latency 12 Cycles

Memory Latency, First Block 60 cycles
Memory Latency, Following Block 5 Cycles
Memory Bandwidth (Bytes/Cycle) 32

TLB Latency 30 Cycles

suite. These benchmarks were chosen because they were the only ones that
had MinneSPEC [7] reduced input sets available at the time. MinneSPEC
small, medium, and large reduced input sets and SPEC test and train re-
duced input sets were used to control the execution time. Benchmarks that
use a reduced input set exhibit behavior similar to when the benchmark is
executed using the reference input [7]. Since reduced input sets were used,
the benchmarks were run to completion without any fast-forwarding. All of
the benchmarks that were used in this work were compiled at optimization
level -O3 using the SimpleScalar version of gcc (version 2.63) for the PISA
instruction set, which is a MIPS-like ISA. Table 1.4 shows the benchmarks
and the specific input sets that were used. The input set in the second and
third columns is arbitrarily named “Input Set A”while the other input set is
likewise named “Input Set B”.
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TABLE 1.4: Selected SPEC CPU 2000 Benchmarks and Input
Sets

Benchmark Input Set A Name Instr. (M) Input Set B Name Instr. (M)

gzip Small (log) 526.4 Medium (log) 531.4
vpr-Place Medium 216.9 Small 17.9
vpr-Route Medium 93.7 Small 5.7

gcc Medium 451.2 Test 1638.4
mesa Large 1220.6 Test 3239.6
art Large 2233.6 Test 4763.4
mcf Medium 174.7 Small 117.0

equake Large 715.9 Test 1461.9
ammp Medium 244.9 Small 68.1
parser Medium 459.3 Small 215.6
vortex Medium 380.3 Large 1050.0
bzip2 Large (source) 1553.4 Test 8929.1
twolf Test 214.6 Large 764.9

1.5 Performance Results for Instruction Precomputation

1.5.1 Upper-Bound - Profile A, Run A

The first set of results presents the upper-bound performance results of
Instruction Precomputation; the upper-bound occurs when the same input
set is used for both profiling and performance simulation. To determine this
upper bound, the benchmark was first profiled with Input Set A to find the
highest frequency unique computations. Then the performance of Instruction
Precomputation was evaluated with that benchmark by using Input Set A
again. The shorthand notation for this experiment is Profile A, Run A.

Figure 1.4 shows the speedup due to Instruction Precomputation for 16 to
2048 PT entries. For comparison, the speedup due to using a L1 D-Cache
that is twice as large as the L1 D-Cache of the base processor is included.
This result, labeled “Big Cache”, represents the alternative of using the chip
area for something other than the PT. The total capacity of this cache is 64
KB. These results show that the average upper-bound speedup due to using
a 16-entry PT is 4.82% for these 13 benchmarks (counting vpr-Place and vpr-
Route separately) while the average speedup for a 2048-entry PT is 10.87%.
Across all benchmarks, the range of speedups for a 2048-entry PT is 0.69%
(art) to 45.05% (mesa). The average speedup results demonstrate that the
upper-bound performance improvement due to Instruction Precomputation is
fairly good for all table sizes.

Instruction Precomputation is very effective in decreasing the execution
time for two benchmarks, mesa and equake, since the Top 2048 unique com-
putations account for a very large percentage of the total dynamic instructions
for these two benchmarks. Table 1.1 shows that the 2048 highest frequency
unique computations account for 44.49% and 37.87% of the total dynamic
instruction count in mesa and equake, respectively.
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FIGURE 1.4: Instruction Precomputation speedup; profile input Set A,
run input set A

The average speedup due to using the larger L1 D-Cache is only 0.74%. By
comparison, the upper-bound speedup when using a 2048-entry Precomputa-
tion Table averages 10.87%. Therefore, using approximately the same chip
area for a Precomputation Table instead of for a larger L1 D-Cache appears
to be a much better use of the available chip area.

1.5.2 Different Input Sets - Profile B, Run A

Since it is unlikely that the input set that is used to profile the benchmark
will also be the same input set that will be used to run the benchmark,
this section evaluates the situation when two different input sets are used for
profiling and for execution. This group of results represents the typical case
in which Instruction Precomputation is most likely to be used. Figure 1.5
shows the speedup due to Instruction Precomputation when using Input Set
B for profiling and Input Set A for execution, i.e. Profile B, Run A.

As shown in Figure 1.5, the average speedup ranges from 4.47% for a 16-
entry PT to 10.53% for a 2048-entry PT. By comparison, for the same PT
sizes, the speedup for Profile A, Run A ranges from 4.82% to 10.87% for the
same table sizes. These results show that the average speedups for Profile B,
Run A are very close to the upper bound speedups for the endpoint PT sizes.
In addition, with the exception of mesa, the speedups for each benchmark are
similar.

Although the speedups for a 32-entry, 64-entry, and 128-entry PT are sig-
nificantly lower than the upper-bound for mesa, those differences completely
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FIGURE 1.5: Instruction Precomputation speedup; profile input set B,
run input set A

disappear for PT sizes larger than 256 entries. The reason for the speedup
differences and their subsequent disappearance is that the highest frequency
unique computations for Input Set B do not have as high a frequency of exe-
cution for Input Set A. Therefore, until the highest frequency unique compu-
tations for Input Set A are included in the PT (for PT sizes larger than 128),
the speedup for Profile B, Run A for mesa will be lower than the upper-bound
speedup.

In conclusion, the key result of this sub-section is that the performance
of Instruction Precomputation is generally not affected by the specific input
set since the Profile B, Run A speedups are very close to the upper-bound
speedups. This conclusion is not particularly surprising since Table 1.2 showed
that a large number of the highest frequency unique computations are common
across multiple input sets.

1.5.3 Combination of Input Sets - Profile AB, Run A

While the performance of Instruction Precomputation is generally not af-
fected by the specific input set, the speedup when different input sets are
used for profiling and execution affects the speedup for at least one bench-
mark (mesa). Although the difference in speedups disappeared for PT sizes
larger than 256 entries, sufficient chip area may not exist to allow for a larger
table. One potential solution to this problem is to combine two sets of unique
computations – which are the product of two different input sets – to form a
single set of unique computations that may be more representative of all input
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FIGURE 1.6: Instruction Precomputation Speedup; profile input set AB,
run input set A

sets. Since two input sets are profiled and combined together, this approach
is called Profile AB, Run A.

To form this combined set, unique computations were selected from the
2048 highest frequency unique computations from Input Set A and Input Set
B. Excluding duplicates, the unique computations that were chosen for the
final set were the ones that accounted for the largest percentage of dynamic
instructions for their input set.

Figure 1.6 shows the speedup due to Instruction Precomputation for Profile
AB, Run A for 16-entry to 2048-entry PT tables. These results show that
the average speedup ranges from 4.53% for a 16-entry PT to 10.71% for a
2048-entry PT. By comparison, the speedup for Profile A, Run A ranges from
4.82% to 10.87% for the same table sizes, while the speedup for Profile B, Run
A ranges from 4.47% to 10.53%. Therefore, while the average speedups for
Profile AB, Run A are closer to the upper bound speedups, using the combined
set of unique computations provides only a slight performance improvement
over the Profile B, Run A speedups.

The main reason that the speedups for Profile AB are only slightly higher
than the speedups for Profile B is that the highest frequency unique compu-
tations from Input Set A are very similar to their counterparts from Input
Set B, for most benchmarks. Table 1.2 shows that with the exceptions of
vpr-Place, mesa, and twolf, more than half of the highest frequency unique
computations are common to both input sets. Therefore, it is not surprising
to see that the speedup with this combined profile is only slightly higher.

Finally, although Profile AB yields higher speedups, the downside of this
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approach is that the compiler needs to profile two input sets. Therefore, from
a cost-benefit point-of-view, an additional 0.29% (16 PT entries) to 0.15%
(2048 PT entries) average speedup is not likely to offset the cost of profiling
two input sets and combining their unique computations together.

1.5.4 Frequency versus Frequency and Latency Product

Although the set of the highest frequency unique computations represents
the largest percentage of dynamic instructions, those instructions could have
a lower impact on the execution time than their execution frequencies would
suggest since many of those dynamic instructions have a single-cycle execution
latency. Therefore, instead of choosing unique computations based only on
their frequency of execution, choosing the unique computations that have the
highest frequency-latency product (FLP) could yield a larger performance
gain. The execution latency of a unique computation is strictly determined
by its opcode, except for loads. Consequently the FLP for a unique non-load
computation can be computed by multiplying the frequency of that unique
computation by its execution latency.

Figure 1.7 presents the speedup due to Instruction Precomputation for Pro-
file B, Run A for 16-entry to 2048-entry PT tables. As shown in Figure 1.7, the
average speedup ranges from 3.85% for a 16-entry PT to 10.49% for a 2048-
entry PT. In most cases, the speedup when using the highest FLP unique
computations is slightly lower than the speedups when using the highest fre-
quency unique computations. While this result may seem a little counterintu-
itive, the reason for this result is because the processor can issue and execute
instructions out-of-order. This out-of-order execution allows the processor to
hide the latency of high latency instructions by executing other instructions.

While the out-of-order processor is able to tolerate the effects of longer exe-
cution latencies, it is somewhat limited by the number of functional units. By
using the highest FLP unique computations, fewer instructions are dynam-
ically eliminated (as compared to when using the highest frequency unique
computations), thus increasing the number of instructions that require a func-
tional unit. As a result, any performance improvements gained by using the
highest FLP unique computations are partially offset by functional unit con-
tention.

1.5.5 Performance of Instruction Precomputation versus Value
Reuse

As described above, the key difference between Value Reuse and Instruction
Precomputation is that Value Reuse dynamically updates the VRT while the
PT is statically managed by the compiler. Since the two approaches are
quite similar, this sub-section compares the speedup results of Instruction
Precomputation with the speedup results for Value Reuse.

The configuration of the base processor is the same as the base processor
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FIGURE 1.7: Instruction Precomputation speedup; profile input set B,
run input set A for the highest frequency-latency products

configuration for Instruction Precomputation. The VRT size varies from 16
to 2048 entries. When the program begins execution, all entries of the VRT
are invalid. During program execution, the opcode and input operands of
each dynamic instruction are compared to the opcodes and input operands in
the VRT. As with Instruction Precomputation, when the opcodes and input
operands match, the VRT forwards the output value to that instruction and
it is removed from the pipeline. Otherwise, the instruction executes normally.
Entries in the VRT are replaced only when the VRT is full. In that event,
the least-recently used (LRU) entry is replaced.

As shown in Figure 1.8, the average speedup ranges from 1.82% for a 16-
entry VRT to 7.43% for a 2048-entry VRT while, by comparison, the speedup
for Instruction Precomputation (Profile B, Run A) ranges from 4.47% to
10.53%. For all table sizes, Instruction Precomputation has a higher speedup;
this difference is especially noticeable for the 16-entry tables.

Since Value Reuse constantly replaces the LRU entry with the opcode and
input operands of the latest dynamic instruction, when the VRT is small,
it can easily be filled with low frequency unique computations. By contrast,
Instruction Precomputation is most effective when the table size is small since
each entry in the PT accounts for a large percentage of dynamic instructions.
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FIGURE 1.8: Speedup Due to Value Reuse; Run A

1.6 An Analytical Evaluation of Instruction Precompu-
tation

While the speedup results in the previous section show that Instruction Pre-
computation yields significant performance improvements, the key question is:
Why does Instruction Precomputation - and, by association, Value Reuse -
improve the processor’s performance? To answer this question, a Plackett and
Burman design [8], as described in [9], was applied to Instruction Precompu-
tation. The Plackett and Burman design is a statistically-based approach that
measures the effect that each variable parameter has on the output variable,
e.g. execution time. By knowing which processor or memory parameters have
the most effect on the execution time, the computer architect can determine
which parameters are the largest performance bottlenecks. By comparing the
performance bottlenecks that are present in the processor before and after
Instruction Precomputation is applied, the effect that Instruction Precom-
putation has on relieving or exacerbating the processor’s bottlenecks can be
easily seen.

The advantage that a fractional multi-factorial design, such as the Plackett
and Burman design, has over a full multi-factorial design, such as the Anal-
ysis of Variance (ANOVA) design, is that the number of test cases required
to execute the design is proportionally related to – instead of exponentially
related to – the number of variable parameters.

Table 1.5 shows the results of using a Plackett and Burman design to analyze
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TABLE 1.5: Processor Performance Bottlenecks, by
Average Rank, Before and After Adding Instruction
Precomputation

Component Before After Before - After
ROB Entries 2.77 2.77 0.00

L2 Cache Latency 4.00 4.00 0.00
Branch Predictor Accuracy 7.69 7.92 -0.23
Number of Integer ALUs 9.08 10.54 -1.46

L1 D-Cache Latency 10.00 9.62 0.38
L1 I-Cache Size 10.23 10.15 0.08
L2 Cache Size 10.62 10.54 0.08

L1 I-Cache Block Size 11.77 11.38 0.39
Memory Latency, First 12.31 11.62 0.69

LSQ Entries 12.62 13.00 -0.38

the effect that Instruction Precomputation has on the processor’s performance
bottlenecks. The first column of Table 1.5 lists the ten most significant perfor-
mance bottlenecks, out of a possible 41, while the second and third columns
show the average rank of each component before and after, respectively, In-
struction Precomputation is added to the processor. Finally, the fourth col-
umn shows the net change in the average rank. Since the components are
ranked in descending order of significance, the most significant performance
bottleneck is given a rank of 1, while the second most significant parameter
is given a rank of 2, and so on.

The results in Table 1.5 show that Instruction Precomputation significantly
relieves one performance bottleneck, the number of integer ALUs, since its
average rank increases. Therefore, Instruction Precomputation has a similar,
but not precisely the same, effect on the processor as adding additional integer
ALUs. This result is not particularly surprising since most of the unique com-
putations that are cached in the PT are operations that would have executed
on an integer ALU. Therefore, adding Instruction Precomputation reduces
the amount of contention for the integer ALU.

On the other hand, adding Instruction Precomputation somewhat exacer-
bates another performance bottleneck, the memory latency of the first block.
The result is expected since, with Instruction Precomputation, the processor
core consumes instructions at a faster rate, which puts more stress on the
memory hierarchy.

In summary, using a Plackett and Burman design to analyze the effect of
Instruction Precomputation shows that Instruction Precomputation improves
the processors performance primarily by reducing the amount of pressure on
the functional units. However, since the processor’s performance is somewhat
limited by the memory latency, further performance improvements due to
Instruction Precomputation will come only by also diminishing the impact of
the memory latency.
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1.7 Extending Instruction Precomputation by Incorpo-
rating Speculation

Although the speedup results in Section 1.5 show that Instruction Precom-
putation can significantly improve the processor’s performance, two problems
limit additional performance gains. The first problem is that Instruction Pre-
computation is a non-speculative technique. While this characteristic elimi-
nates the need for prediction verification hardware, the associated cost is that
the Instruction Precomputation hardware must wait until both input operands
are available. Since many of the unique computations in the PT are for opera-
tions that would execute on a low latency functional unit, dynamically remov-
ing these redundant computations does not dramatically reduce the latency
of these operations; in fact, the only pipeline stages that these computations
can bypass – and the total number of cycles that can be saved – are between
the stage when the PT is accessed and the execute stage. Consequently, the
non-speculative nature of Instruction Precomputation, i.e. waiting for both
input operand values to become available, limits the performance gain.

The second problem is that the access time of the PT depends on the
number of bits in the opcode and input operands. Since complete bit-by-bit
comparisons are necessary, increasing the number of bits in the input operands
from 32 to 64 bits, for example, dramatically increases the access time to the
PT. Furthermore, depending on its specific implementation, the PT may be
fully-associative, which further increases the PT access time. However, each
additional cycle that is needed to access the PT directly decreases the latency
reduction benefit of Instruction Precomputation.

One possible solution to these two problems that can further increase the
performance of Instruction Precomputation is to speculatively “reuse”the out-
put value after one input operand becomes available instead of waiting for both
to become available. When one of the input operands becomes available, that
value, or a hashed version, is used as an index in the PT. Then, depend-
ing on its implementation, the PT would either return the output value of
the highest frequency unique computation (or multiple high frequency unique
computations) that has that value as one of its input operand values. That
output value can then be forwarded to any dependent instructions, which can
speculatively execute based on that value. Obviously, the output value of the
“reused”instruction needs to be checked and dependent instructions need to
be re-executed if the speculation was incorrect.

While this approach is essentially a combination of Instruction Precompu-
tation and Value Prediction [10], it has at least one advantage over either
approach. As compared to Instruction Precomputation, speculatively reusing
instructions requires the Instruction Precomputation hardware to wait for
only a single input operand to become available. Also, fewer bits need to
be compared. Furthermore, by profiling to determine the highest frequency
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unique computations and actually using a single input operand value to index
into the PT, this approach may yield higher prediction accuracies than value
prediction for more difficult-to-predict output value patterns.

1.8 Related Work

Sodani and Sohi [11] analyzed the frequency of unique computations as-
sociated with static instructions in the integer benchmarks of the SPEC 95
benchmark suite. Their results showed that 57% to 99% of the dynamic in-
structions produced the same result as an earlier instance of the instruction.
Therefore, in typical programs, a very large percentage of the computations
are redundant. Of the static instructions that execute more than once, most
of the repetition is due to a small sub-set of the dynamic instructions. More
specifically, with the exception of m88ksim, less than 20% of the static instruc-
tions that execute at least twice are responsible for over 90% of the dynamic
instructions that are redundant. For m88ksim, those static instructions are
responsible for over 50% of the instruction repetition.

Gonzalez et al. [12] also analyzed the frequency of redundant computations,
but in both the integer and floating-point benchmarks of the SPEC 95 bench-
mark suite. Their results showed that 53% to 99% of the dynamic instruc-
tions repeated and that there is not a significant difference in the frequency of
redundant computation between the integer and floating-point benchmarks.
Overall, their results confirm the key conclusion from [11] that there is a signif-
icant amount of redundant computations associated with static instructions.

Sodani and Sohi [1] proposed a dynamic Value Reuse mechanism that ex-
ploited the Value Reuse that was associated with each static instruction. Each
static instructions PC is used as an index to access the Value Reuse table.
This approach produced speedups of 0% to 17%, 2% to 26%, and 6% to 43%
for a 32-entry, a 128-entry, and a 1024-entry, respectively, VRT.

By contrast, Molina et al. [13] proposed a dynamic Value Reuse mechanism
that exploits the output value that was associated with each static instruction
and across all static instructions, i.e. by unique computation. The resultant
speedups are correlated to the area used. For instance, when using a 221KB
table, the speedups range from 3% to 25%, with an average of 10%. The
speedups dropped to 2% to 15% with an average of 7% when the table area
decreased to 36KB.

Citron et al. [14] proposed using distributed Value Reuse tables that are
accessed in parallel with the functional units. Since this approach reduces the
execution latency of the targeted instruction to a single cycle, it is best suited
to bypass the execution of long latency arithmetic and logical instructions, e.g.
integer and floating-point multiplies, divides, and square roots. As a result,
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although this mechanism produces speedups up to 20%, it is best suited for
benchmarks with a significant percentage of high-latency instructions, such
as the MediaBench benchmark suite [16].

Huang and Lilja [15] introduced Basic Block Reuse, which is Value Reuse at
the basic block level. This approach uses the compiler to identify basic blocks
where the inputs and outputs were semi- invariant. At run-time, the inputs
and outputs for that basic block are cached after the first execution of that
basic block. Before a subsequent execution, the current inputs of that basic
block are compared with cached versions. If a match is found, the register file
and memory are updated with the correct results. This approach produced
speedups of 1% to 14% with an average of 9%.

Azam et al. [17] proposed using Value Reuse to decrease the processors
power consumption. Value Reuse can decrease power consumption by reduc-
ing the latency of instructions to a single cycle and by removing the instruction
from the pipeline. Their results showed that an eight-entry reuse buffer de-
creased the power consumption by up to 20% while a 128-entry reuse buffer
decreased the power consumption by up to 60%, even after adding a pipeline
stage to access the reuse buffer.

1.9 Conclusion

Redundant computations are computations that the processor previously
executed. Instruction Precomputation is a new mechanism that can improve
the performance of a processor by dynamically eliminating these redundant
computations. Instruction Precomputation uses the compiler to determine the
highest frequency unique computations, which subsequently are loaded into
the Precomputation Table (PT) before the program begins execution. Instead
of re-computing the results of a redundant computation, its output value is
forwarded from the matching entry in the PT to the dependent instruction
and then the redundant instruction is removed from the pipeline.

The results in this chapter show that a small number of unique com-
putations account for a disproportionate number of dynamic instructions.
More specifically, less than 0.2% of the total unique computations account
for 14.68% to 44.49% of the total dynamic instructions. When using the
highest frequency unique computations from Input Set B while running In-
put Set A (Profile B, Run A), a 2048-entry PT improves the performance
of a base 4-way issue superscalar processor by an average of 10.53%. This
speedup is very close to the upper-limit speedup of 10.87%. This speedup is
higher than the average speedup of 7.43% that Value Reuse yields for the same
processor configuration. More importantly, for smaller table sizes (16-entry),
Instruction Precomputation outperforms Value Reuse, 4.47% to 1.82%. Fi-
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nally, the results show that the speedup due to Instruction Precomputation
is approximately the same regardless of which input set is used for profiling
and regardless of how the unique computations are selected (frequency or
frequency/latency product).

Overall, there are two key differences between Instruction Precomputation
and Value Reuse. First of all, Instruction Precomputation uses the compiler to
profile the program to determine the highest frequency unique computations
while Value Reuse does its profiling at run-time. Since the compiler has more
time to determine the highest frequency unique computations, the net result
is that Instruction Precomputation yields a much higher speedup than Value
Reuse for a comparable amount of chip area. Second, although using the
compiler to manage the PT eliminates the need for additional hardware to
dynamically update the PT, it can dramatically increase the compile time
since the compiler must profile the program.
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